
apcmag.com  february 06  workshop1 workshop  february 06  apcmag.com 2

softwaresoftwareHANDS–ON WITH HARDWARE AND SOFTWARE

2006

FEBRUARY

SECURITY AND SYSTEM PROTECTION
workshop

apcmag.com  february 06  workshop1 workshop  february 06  apcmag.com 2

softwaresoftwareHANDS–ON WITH HARDWARE AND SOFTWARE

2006

FEBRUARY

SECURITY AND SYSTEM PROTECTION
workshop

One of the reasons many people switch to
Linux is because they mistakenly think it’s a
more secure operating system. While it’s true
that there are not nearly as many security
vulnerabilities for malicious users to take
advantage of under Linux, an unpatched,
unprotected Linux system can still be
compromised, leading to data loss and leaving
it open for malicious purposes. Regardless of
what operating system you use, you have to
patch every hole — but a malicious user only
has to find one.

FIREWALLS
When people think about protecting their
system from malicious users, the first thing that
springs to mind for many is a firewall. Last
month (APC January, page 118), the basic firewall
configuration tool was shown. While this tool
doesn’t supply the best level of security, it does a
reasonable job for users who don’t want to learn
about the iptables functions of the Linux kernel.

On the other end of the spectrum is the
hardcore power user. Instead of using the
Security Level Configuration tool, this type of

user will handcraft their own firewall script using
a large number of iptables commands (not for
the faint-hearted though).

Personally, I’m more concerned about
efficiency. I look after a large number of Linux
systems, and I want to be able to easily change
the firewall ruleset on any given server with a
minimum of fuss — especially when
troubleshooting connectivity issues. In cases
such as this, a well-designed firewall script
is a solid protection option. While there are
dozens of suitable scripts available, Advanced
Policy Firewall (APF) from R-fx Networks
(www.r-fx.ca)has a large number of features
and numerous add-ons that provide additional
system protection (including brute force
detection). Downloads and updates of APF are
freely available from www.r-fx.ca/apf.php.

Installing APF is as simple as untarring the
tar.gz file and running an install script located in
the archive (all as the root user):

mkdir /root/apf

tar –zxvf apf-current.tar.gz /root/apf

Mastering Linux, part 15
Just because you’re paranoid doesn’t mean they’re not after you. Jarrod Spiga demonstrates
how to protect your Linux system.

JARROD
SPIGA

Jarrod Spiga is an
infrastructure and network engineer
who specialises in getting Linux
and Windows systems happily
coexisting with each other. He
currently holds CCNA and numerous
MCP certifications, and dabbles in
Web application development in his
spare time.

SKILL LEVEL
Advanced

REQUIREMENTS
An installation of Linux (Fedora
Core 4 and Red Hat Enterprise
Linux ES 3.0 were used in the
writing of this Workshop).

TIME TO COMPLETE
3 hours

IN THIS SERIES
Part 14 – January ‘06
Remote X Windows.
Part 15 – February ‘06
Security and system protection.
Part 16 – March ‘06
Network file services.

BONUS DVD SOFTWARE
PDFs of every instalment in the
Mastering Linux series.

1

Opening doors: by default, APF blocks all inbound
requests to your Linux system. You’ll need to open

the ports for services running on your system.

apcmag.com  february 06  workshop1 workshop  february 06  apcmag.com 2

softwaresoftwareHANDS–ON WITH HARDWARE AND SOFTWARE

2006

FEBRUARY

SECURITY AND SYSTEM PROTECTION
workshop

apcmag.com  february 06  workshop1 workshop  february 06  apcmag.com 2

softwaresoftwareHANDS–ON WITH HARDWARE AND SOFTWARE

2006

FEBRUARY

SECURITY AND SYSTEM PROTECTION
workshop

/root/apf/apf-0.9.6-1/install.sh

1 By default, APF will block all inbound
access attempts to your system bar SSH
(which runs on port 22). Egress filtering is
disabled, allowing you to establish any
outbound connection from your system.
This default configuration offers a reasonable
level of protection and, depending on the
services you have running on your Linux box,
you may have to edit this configuration.

To make such changes, edit the /etc/apf/
conf.apf file. This file lists all of the configuration
options for APF as well as detailed descriptions
of what each setting does.

If you’re testing firewall rulesets from a
remote system, ensure that you enable
development mode while testing. This mode
ensures against implementing a ruleset that
blocks your access to the system. If you
mistakenly enable such a ruleset, the firewall is
disabled after five minutes, restoring your access
in the process.

APF runs as a service on Fedora, CentOS
and Red Hat Linux distributions. To start the
firewall, type:

service apf start

By default, the firewall will not load up on boot.
Once you’ve created a configuration you’re
happy with (and have tested it thoroughly),
the following commands will set your system
to start APF on system boot:

chkconfig –add apf

chkconfig –level 345 apf on

2 Once you have APF installed and running,
take a look at the Brute Force Detection add-on
to APF (www.r-fx.ca/bfd.php). 3 This add-on is
especially handy if your system is directly
connected to the Internet, as it will dynamically
block most brute-force access attempts to your
system (BFD running on one of my servers
detects on average six different brute-force
hacking attempts daily, and dramatically
reduces the length and risk of each attack).

ADVANCED FILE PERMISSIONS
Way back in part three (APC February 2005,
page 98), we covered the basics of file system

permissions and how to change the owner and
group of files. However, there are a few other
permissions settings available for use.

Files can be marked as Set User ID (SUID)
executables or Set Group ID (SGID) executables.
Both markings achieve similar results — when a
file is executed by a user who has executable
permissions, it is granted access to system
resources as if it was run by the owner user or
owner group of the file.

You can tell a file has been marked as SUID or
SGID executables by looking at the execute
character in a file’s user or group field
respectively. A regular executable will contain
the letter “x” in this field, while an SUID or SGID
executable will contain an “s”.

4 Sticky-bits are also assigned to directories.
When assigned, all users are allowed to write
files to the directory (or create subdirectories),
but they are only permitted to modify or delete
files they have previously created or files that
they own. A sticky-bit enabled directory will
have the letter “t” appearing in the execute
character of a directory’s everyone field.

Much like regular permissions settings, these
advanced settings can also be assigned using
the chmod command. To set these permissions,
you need to supply numeric arguments to
chmod, adding an extra digit at the beginning of
the permissions code. Binary arithmetic is used
to set this extra digit properly, according to the
following table:

Value Meaning

4 Assigns the SUID property to a file

2 Assigns the SGID property to a file

1 Assigns the sticky-bit to a directory

For example, to make a file both SUID and SGID
executable for all users, one would enter:

chmod 6755 <filename>

where <filename> is the name of the file that we
are applying these permissions to. The above
example will also set the regular permissions on
the file so that the owner can edit the file, but
others can only read and execute it. To preserve
the existing basic permissions, you would use
the + sign to add the advanced permissions
as follows:

chmod +6000 <filename>

These advanced permissions can also be
removed by simply replacing the + sign with
a - sign. From a security perspective, it’s
important that you assign SUID and SGID
properties with extreme caution. When
enabled, both properties allow users to

2

Instant notification: the Brute Force Detection extension to APF provides proactive blocking of hacking
attempts on your Linux system.

apcmag.com  february 06  workshop3 workshop  february 06  apcmag.com 4

softwaresoftwareHANDS–ON WITH HARDWARE AND SOFTWARE

2006

FEBRUARY

SECURITY AND SYSTEM PROTECTION
workshop

apcmag.com  february 06  workshop3 workshop  february 06  apcmag.com 4

softwaresoftwareHANDS–ON WITH HARDWARE AND SOFTWARE

2006

FEBRUARY

SECURITY AND SYSTEM PROTECTION
workshop

transcend the restrictions placed by their current
account settings.

By the same token, you should be wary of
any files that are not located in bin directories
(ie. /sbin, /usr/bin and /usr/sbin) that have these
permissions set. The presence of such files could
indicate the presence of a rootkit or trojan
installed on your Linux system. The following
two commands will generate a list of all SUID
and SGID files on your system:

find / -perm +2000

find / -perm +4000

PROTECTING THE ROOT ACCOUNT
The root account has permission to do anything
on a Linux system. If an unauthorised user

managed to get root access to your system, they
could erase your entire system if they chose to
do so. Actually, they’d be more likely to install
malicious software and hide that software with a
rootkit, which is probably even worse than
erasing the entire file system.

As such, you need to protect the root
account in as many ways as possible, while still
providing yourself with the ability to perform
root-user functions.

One of the first things that you can do is to
disable direct root logins via SSH. This is even
more important if your Linux machine is directly
connected to the Internet (and acting as a Web
server, for instance).

To do so, edit your /etc/ssh/sshd_config file
in the editor of your choice. Uncomment the
PermitRootLogin line and ensure that this

directive is followed by a single space and the
word “no”. While you’re at it, uncomment the
Protocol line, and ensure that this directive is
followed by a space and the number 2. This
forces you to use SSH 2 to connect to the server,
a more secure update to the original SSH
specification. Save your changes, exit from your
editor and then restart your SSH daemon:

service sshd restart

In order to gain access to the root account
via SSH, users will now need to log on to the
system as a regular user and then execute
the su command. This forces them to enter
two passwords instead of just one.

The next thing you can do is restrict access to
the su command. You do this by enabling a
special group called “wheel” and ensuring that
the su command can only be run by members of
the wheel group.

Adding users to the wheel group is simply
done by using the gpasswd command
(see part 12 — APC November 2005, page 112):

gpasswd –a <user> wheel

where <user> is the name of the user account
that you want added to the wheel group. Step
two is done by using the chown command to
ensure that members of the wheel group have
access to the su command:

chown root:wheel /bin/su

Next, the su command needs to have the correct
permissions assigned to it so that members of
the wheel group (and only members of this
group) can execute it (using the advanced
permissions techniques mentioned previously):

chmod 4750 /bin/su

The su command now has the following
permissions:

-rwsr-x--- root wheel

In a nutshell, this means that members of the
wheel group can execute the command, but
root privileges are used to execute it. No other
groups can even read the command and the
root user is the only one who can make
modifications to the file.

5 The last protection mechanism that will be
listed here is to enable an email alert to be sent
each time someone logs in as the root user. To
do this, edit the /root/.bash_profile file, and add
the following line to the bottom of the file:

Denied! Once BFD blocks an attack, the IP address that initiated the attack is listed in /etc/apf/deny_
hosts.rules. APF blocks all communication with these IP addresses.

SUID and sticky-bits: /var/tmp is an example of a directory that usually has the sticky-bit enabled.
The su command is one of a few files that should always be SUID-executable.

3

4

apcmag.com  february 06  workshop3 workshop  february 06  apcmag.com 4

softwaresoftwareHANDS–ON WITH HARDWARE AND SOFTWARE

2006

FEBRUARY

SECURITY AND SYSTEM PROTECTION
workshop

apcmag.com  february 06  workshop3 workshop  february 06  apcmag.com 4

softwaresoftwareHANDS–ON WITH HARDWARE AND SOFTWARE

2006

FEBRUARY

SECURITY AND SYSTEM PROTECTION
workshop

echo ‘ALERT - Root Shell Access on:’ `date`
`who` | mail -s “Alert: Root Access from `who |
awk ‘{print $6}’`” <email>

where <email> is the email address that you
would like the email alert to be sent to. It’s a
good idea to get this email sent to an external
email account (that is, an email account not on
the system in question). That way, a malicious
user cannot delete the system-generated email
before you read it.

SETTING LOGIN TIMEOUTS
If your Linux system has multiple people
using it at various times, it might be
worthwhile implementing login timeouts on
your system. With this enabled, any session
that has been idle for longer than a defined
period of time will be automatically logged
out. This setting only applies to command
shells — GUI users can still remain logged
in to the system.

Each of the scripts that are located in
the /etc/profile.d directory are executed
each time any user logs on to the shell.
Therefore, by adding a simple script that
sets the timeout to this directory, the
timeout will apply to everyone who logs
on to the system:

vi /etc/profile.d/timeout.sh

All that this script needs to do is set the TMOUT
variable as follows:

TMOUT=<time>

where <time> is the number of seconds that you
wish to set the timeout to. In general, a value of
1800 (30 minutes) is a fairly generous timeout,
but you may wish to change this value
depending on your circumstances.

After creating the file, you should ensure that
it is able to be executed by all users:

chmod ugo+x /etc/profile.d/timeout.sh

One last caveat about this script is that it will
only be executed if users are using the bash
shell. The other popular shell of choice is the
C shell (csh, and its variants). A second profile.d
script can take care of users using this shell:

vi /etc/profile.d/timeout.csh

The format of the timeout command is slightly
different for this shell:

set autologout=<time>

where <time> is the login timeout in minutes.
Again, you’ll need to make sure that the script
you’ve created is executable by all users:

chmod ugo+x /etc/profile.d/timeout.csh

RESTRICTING SHELLS
It’s not possible to set login timeouts on most
other shells. If you’d prefer to restrict the users of
the system from being able to access other shells
which may be installed on your Linux system,

edit the /etc/shells file. To prevent access to
a shell, simply place a # in front the shell’s
command path to comment out the line.

OTHER SECURITY TIPS
These items are just the tip of the iceberg when
it comes to Linux security. Some other things to
consider in order to harden up your box are to:
• Disable Telnet from within xinetd (www.phy.

bnl.gov/cybersecurity/telnet.html).
• Install an intrusion detection service such as

Tripwire (www.tripwire.com/).
• Install and periodically run rootkit detection

applications such as chkrootkit (www.chk
rootkit.org) and rkhunter (www.rootkit.nl/).

• Mask service names and version numbers on
various system services (especially PHP,
Apache, MySQL, FTP and SMTP services).

• And finally, educate users on having strong
and secure passwords.

Who’s using root? This email notification tells me
that I’ve just used the su command to login as the
root user on a server.

NEXT MONTH
In next month’s Mastering Linux Workshop,
we’ll explore network file systems and
Samba. At the end of this guide, you’ll be
able to share files more easily between
Linux and Windows systems.

where <time> is the number of seconds that you

INSIDE INFO
APF (Advanced Policy Firewall)
www.r-fx.ca/apf.php

5

